If it's not what You are looking for type in the equation solver your own equation and let us solve it.
160=10x^2-20x
We move all terms to the left:
160-(10x^2-20x)=0
We get rid of parentheses
-10x^2+20x+160=0
a = -10; b = 20; c = +160;
Δ = b2-4ac
Δ = 202-4·(-10)·160
Δ = 6800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6800}=\sqrt{400*17}=\sqrt{400}*\sqrt{17}=20\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{17}}{2*-10}=\frac{-20-20\sqrt{17}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{17}}{2*-10}=\frac{-20+20\sqrt{17}}{-20} $
| 9x-14=7x+9 | | 9h=10=91 | | 6x+19=289 | | 1.1052=(1+(0.1/x)^-x | | 30x+45=80(x+50) | | 3x+60=32 | | 2-p-1-p=0 | | 1+2-2p=0 | | (3x+1)(2x+3)=0 | | -4(3-x)=x+6 | | (6x+3)-(2x-5)=28 | | 2(4n+1)-4n-5=17 | | 4x2+x4=0 | | X+22=85-x | | 16/x=x/4x= | | 7-8x=-14 | | 11d-4d+5d-2d=20 | | 6(y-3)=2y-34= | | 3x(2+x2=3x +6 | | 2x+3-6x=13 | | 2x+3-8=12 | | 2(x+7)-3(8-x)=9 | | 4(g+2)=3(g-1) | | 3x-8=-x-12 | | 3x(2+x2)=3x+6 | | 12x²-60x+72=0 | | 2x^-3x-9=0 | | s/2+14=11 | | 5x-14=-3x+4+11x | | -12/t=-4 | | 2n^2+4n-96=0 | | 2x+5-4x=9+2x |